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Abstract—Mobile environments, such as vehicular communi-
cation systems (VCSs), are typically subjected to network fluc-
tuations and intermittent downtimes, e.g., if service consumers
operate in a tunnel or switch between cells of an ISP. In this work,
we present an approach for service and data prefetching from
the Cloud, which allows to ensure continuous service delivery
and consistent quality of experience (QoE). We leverage the fact
that most applications have typical access patterns, for instance
streaming, or polling in regular intervals. In our system model,
we consider the context under which the consumer is currently
executing, including time, location, and projected route (e.g.,
known from GPS navigation). Based on projections for network
quality at future locations, we propose a decision problem for
optimizing data prefetching and continuous QoE, and discuss
different mechanisms for generating service requests for prefetch-
ing. We thoroughly evaluate our approach based on a popular
data set of vehicular GPS traces in Switzerland, which we deploy
and simulate in a Cloud environment. In our experiments we
compare prefetching approaches and address different aspects,
including successful and unsuccessful invocations, prefetching
hits and misses, as well as age and usage of prefetched results.

I. INTRODUCTION

The rise of Cloud Computing [1] has opened unprecedented
possibilities for highly dynamic, scalable, and cost-efficient
applications. Today, the worldwide public Cloud services
market is worth 131 Billion US dollars in 2013, and the annual
growth rate is estimated to be 17.4% from 2011 to 2017'. In
parallel, smart devices like smartphones are omnipresent and
a major driver in the ICT domain: From 2013 to 2018, the
compound annual growth rate of mobile data traffic is forecast
as 61% and by 2016, traffic from wireless devices will exceed
traffic from wired devices. In 2013, smart devices have already
generated 62% of total mobile data traffic, and it is estimated
that there will be more mobile-connected devices than people
on earth by the end of 2014. In 2013 alone, more than 400
million smartphones were added to this pool [3].

Not surprisingly, we see a convergence of mobile and Cloud
Computing, which manifests itself (amongst others) in two
research fields: First, researchers are investigating how the
power of Cloud offerings can be utilized for hybrid environ-
ments with smart devices, for instance to offload computation
in order to save energy or for speed up purposes [4]. Second,
mobile devices are more and more becoming the primary user
interface to Cloud services of all kinds, ranging from media
streaming to general data services located in the Cloud [5].

IFor an overview on different estimates of the size of the Cloud market,
we refer to [2].

The convergence of mobile and Cloud computing leads
to both new opportunities and challenges which need to be
addressed by the research community. One central problem in
mobile Cloud computing is that Cloud services can only be
accessed efficiently if the end user’s device is connected to a
network in a reliable and fault-tolerant manner: consuming
Cloud data sources from a mobile device, by nature, is
sensitive to interruptions. Even a connectivity loss of a few
seconds could lead to a drastic reduction of the quality of
experience (QoE). Especially if mobile devices change their
position rapidly and/or constantly, e.g., because the user is
moving in a vehicle, the QoE may fluctuate heavily.

Hence, it is imperative to prefetch data and buffer it locally
in order to mask connection losses or bad connection qual-
ity [6]. Prefetching is the technique of querying or gathering
any kind of data or service functionality before the moment
that they are actually needed or used. It is related to caching,
not only because caching and prefetching are often combined,
but also since the prefetched data have to be stored in caches
or similar modules. Similar to caching, prefetching can be
used in different domains and with different goals. Apart from
the fact that prefetching may facilitate uninterrupted service
consumption in the first place, it is also an approach to achieve
lower user-perceived latency [7].

Despite the fact that prefetching is a well-studied and
established technique, to the best of our knowledge, there is a
lack of approaches explicitly aiming at prefetching data from
the Cloud on mobile devices (see Section VI). Hence, in this
paper, we conceptualize and implement a corresponding data
prefetching solution, taking into account the specific demands
of Cloud services and mobile users. The prefetching algorithm
which is at the core of our approach relies on context data
(most importantly the user’s location) in order to provide
reliable and personalized prefetching decisions. We will show
that context information like the current and future location of
the user is not only helpful to achieve prefetching in general,
but also helpful to decrease the user-perceived latency.

The remainder of the paper is structured as follows. First,
in Section II we introduce an illustrative scenario which
motivates the research problem. Section III introduces the
assumed system model and details the proposed approach
for data prefetching. Section IV discusses implementation
details, and the approach is thoroughly evaluated in Section V.
In Section VI, we comment on the related work. Finally,
Section VII concludes the paper with outlook for future work.



II. SCENARIO

We consider a scenario from the road user information sys-
tem (RUIS) domain, which is developed within the SIMPLI-
CITY? research project. The project aims at providing a
framework for integrating heterogeneous Cloud services which
contribute to the users’ driving experience. We assume that the
RUIS is running on a mobile device, e.g., a car or smartphone.

A. Characteristics of Scenario Services

Table I contains an exemplary list of considered services,
along with their key characteristics. Service s; provides im-
portant updates such as upcoming traffic jams, s, performs re-
routing if the car gets off track, s3 shows important landmarks
and events in the vicinity of the current location, s4 performs
media streaming (e.g., music streaming like Spotify), s5 allows
to fetch Email and instant messages (IM), and sg gathers
usage statistics and synchronizes updates with the Cloud-based
server. Currently, we consider mainly services consumed by
(human) end users; in the future we also plan to integrate
advanced scenarios with machine-to-machine (M2M) commu-
nication, e.g., mobile stream processing applications [8].

TABLE I
EXEMPLARY SERVICES IN A ROAD USER INFORMATION SYSTEM

Service Impor- Time Access (Pre-)Fetching
tance |Criticality| Pattern Strategy

s1: Traffic Updates| high high push / poll| timely updates
s2: (Re-)Routing high medium |on demand| precompute routes
s3: Vicinity Info  |medium| medium | recurrent | pre-load for route
s4: Media Stream |medium low continuous | pre-load & cache
s5: Mail and IM | medium high polling timely updates
se: Stats & Sync low low recurrent |postpone if required

Each service is associated with the level of importance (en-
coded as high/medium/low), the time criticality (whether the
time of service execution has a crucial impact on the delivered
functionality), the typical access pattern (e.g., streaming, or
polling in regular intervals), as well as possible strategies for
prefetching. For instance, s; is considered highly important
and its information is highly time-critical (e.g., traffic jams);
contrarily, s4 is considered less important but also its time
criticality is low, hence it is well-suited for prefetching.
Services with high time criticality are generally hard to
prefetch entirely. One solution is “timely updates”, a strategy
where the service is called immediately before an expected
network outage, in order to maximize freshness of the data.
Other possible strategies include preloading, precomputing, or
postponing (e.g., for services with low importance).

B. Network Quality and Required Service Prefetching

Figure 1 illustrates a simplified scenario with three mo-
bile devices (m1,mo, m3) connected via an Internet Service
Provider (ISP) to a set of backend services in a Cloud environ-
ment. Note that we primarily investigate the communication
between devices and the backend services, i.e., car-to-car
communication is not in our focus (see Section VI).

Zhttp://www.simpli-city.eu/
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Fig. 1. RUIS Scenario With Fluctuating Network Quality

The lower part of the figure summarizes the terrain, network
characteristics, and service usage patterns of device m; over
time. The terrain information reflects tunnels along the road
with typically no network connectivity (time points 4 and 6),
as well as different signal strengths (e.g., low signal at time 8,
excellent signal at point 5). We assume the current location and
planned route of the device as given (using GPS navigation).
Given a GPS location, it is possible to determine the expected
network quality; these data are either provided by the ISP, or
available from a variety of “speedtest” pages on the Web [9].

We observe that there are in particular three points on
the time axis where the expected network quality is below
the required level (around time points 4, 6, and 8). Since
our goal is to guarantee continuous service delivery, these
situations are considered as the main motivation for the need
for service prefetching. Note, however, that prefetching is not
only required on the mobile consumer side, but also plays
a role if the context of the Cloud backend services, e.g., to
reduce user-perceived latency or hedge against (temporary)
downtimes when using external third-party services.

III. SERVICE PREFETCHING APPROACH

This section presents our approach for data prefetching in
mobile service environments. We first introduce the detailed
system model in Section III-A, then outline a decision problem
for scheduling of prefetching in Section III-B, and finally dis-
cuss different variants for generating and executing prefetching
requests in Section III-C.

A. System Model

The core artifacts of the assumed system model are listed in
Table II. Where applicable, an example with reference to the
scenario in Section II is provided. Note that P(X) denotes
the powerser of a given set X. We use the notation x[i] to
refer to the ith item of a tuple =, whereas idx(j, z) gives the
(one-based) index of the first occurrence of item j in tuple x.
Moreover, XN := Un N X™ denotes the set of all tuples (with
any length) over the set X.



TABLE II
SYSTEM MODEL

Symbol Description Example
S Set of services S ={s1,...,56}
ReSxI Set of concrete service requests|R = {r1 = (s1, loc =

from service input domain I |(47.1,10.2)),...}

M Set of mobile service con-|M = {mi,m2,m3}
sumers, e.g., devices in vehicles

i: S5 = RT Importance of a service, from|i(s1) = 1,4(s2) = 0.7
subordinate (0) to critical (1)
c:S—RT Time criticality of a service, |c(s1) = 1,¢(s2) = 0.8

from low (0) to high (1)

C Domain of consumers’ context |-
information, e.g., time/location

TccC Domain of time {t=1,...,t =10}

LCC Domain of location, e.g., en-|{l = (47.1,10.2),...}
coded as GPS latitude/longitude

t:C—>T Get time encoded in a context [t({t =1}) =1

e : M x C' —|(Predicted) evolution of a con-|e(my,{¢t = 1}) = ({t =

cN sumer’s context over time 2,...}, {t=3,..},...)

r: S x M x C'|Concrete service requests to be|r(si,m1,{t = 4}) =

— P(R) issued under certain contexts |{rq

da : C — RT [Available network quality under|q, ({I = (47.1,10.2)}) =

a given context 0.0

gr : Rx M x C|Required network quality for a|qr(r1,m1,{t = 4}) =
— Rt request under a given context |0.6

p : R X M x C|Prefetching time scheduled for|p(ri,m1,{¢t =3}) =3
—T a request in a given context

q : M x T —|Queue with currently scheduled|q(m1,3) = (r1)
RN requests at a given time

The model contains a set of services (S) which are used
by different mobile consumers (M). The set of service re-
quests (R) represents the domain of concrete invocations is-
sued for a service. Functions ¢ and c determine the importance
and time criticality of services, respectively; they allow to
give precedence to services that are critical with respect to
prefetching. Each consumer is associated with a context (C)
that changes over time (e.g., future path of a vehicle). The
domains of time (') and location (L) are also encoded in
the context. Function e expresses how the context is going to
evolve over the (near) future. This prediction is important to
make prefetching decisions, discussed later in this section.

The available network quality at a given location is ex-
pressed via function g,. Our primary means for assessment is
the data transfer rate of the cellular network, but g, may also
combine aspects such as latency or packet drop rate. As noted
in Section II, real(istic) values for ¢, can be obtained from
publicly available data by providers and users. Additionally,
cost aspects can be expressed in q,, e.g., if data roaming is
disabled then g, drops to 0 as soon as the consumer passes a
country border. The required network quality for a service is
expressed in function g,., which is currently derived from user-
defined access patterns; our future work involves automatic
refinement of ¢, using monitoring and data mining techniques.

Finally, function p in the system model defines the sched-
uled time at which data prefetching should be performed, and
q represents a consumer’s priority queue of requests that are
currently scheduled for prefetching.

Based on the available information encoded in the system
model, the core problems are (1) to decide whether and for

which points in time prefetching should be scheduled, and (2)
to define which concrete service requests should be used to
perform prefetching. Problem (1) is discussed in Section III-B,
and problem (2) is discussed in Section III-C.

B. Prefetch Scheduling Strategies

The service result availability function (a : R x M x C' —
Bool) in Equation 1 specifies under which conditions a service
result is available under a given context: if either (1) the
available network quality is sufficient to make the service
invocation at the time it is required, or (2) the service request
had been prefetched before.

a(rmymwaca:) :ZQa(cx) > QT(r$7mxvcw)v

Jdey € C i p(rg, Mg, cy) = true

Overall, we aim for the goal that all Cloud service data
is available whenever requested, expressed in Equation 2.
This implies that all requests which are scheduled for a time
where the network is unavailable (or the network quality is
insufficient) need to be prefetched.

VTIGRanE]\I,cmGC :
2
(r(re, Mg, cz) > 0) = (a(ry, Mg, i) = true)

As soft constraints for optimizing the prefetch scheduling,
we require that more time-critical services are requested at the
latest possible time (Equation 3) and that precedence is given
to more important service requests (Equation 4).

Z (t(cy) — p(re, my, cz)) * ¢(S5) — min!

52 €S,mgzEM, 3)
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Vg € M t, € T,r1 € g(my,tz), 12 € q(My, ty) :

i(r1[1]) > i(r2[l]) = idz(r1) < idx(ra) @

The prefetching mechanism can be tailored to the impor-
tance and the time criticality of Cloud services, based on the
level of context information available to make the decision. We
distinguish between two basic prefetching strategies, periodic
and context-aware, which are discussed in the following
paragraphs.

1) Periodic Prefetching Strategy: The basic type of
prefetching is to periodically invoke the target service in fixed
or predefined time intervals, denoted ¢;. Figure 2 shows a
timeline where red crosses (e.g., time points t5,tg) indicate
failed invocations due to insufficient network connectivity
(9o < qr). Periodic prefetching is not well suited for services
with high time criticality (c¢(s,) — 1), because prefetchings
may be scheduled too early (i.e., could be scheduled closer to
the time when the result is actually needed, see result age in
the figure). Moreover, this strategy is sub-optimal with respect
to network usage, since it may perform unnecessary prefetch
invocations (i.e., results which are never used, see t1,t3). Yet,
it can be applied when the context evolution (e) is not known



in advance, i.e., there is no information about how the context
and in particular the network quality are going to evolve in
the future (e.g., planned route of the vehicle is not available).
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Fig. 2. Periodic Prefetching

2) Context-Aware Prefetching Strategy: With context-aware
prefetching, we assume that the evolution of the user context,
or at least a relevant portion of it, is known in advance.
In future work we plan to automatically derive sophisticated
predictions for service usage patterns and contexts evolution,
possibly integrating existing work on predicting violations of
service level agreements [10]. The future context information
is used to reveal upcoming problems in connectivity (g, < g;),
and to prefetch in a timely manner. Figure 3 illustrates that
by tendency less requests are required and the result age is
reduced. Moreover, note that this strategy allows to create
context-specific requests. In contrast to Figure 2, where the
same service results are used at tg9 and ¢1;, we now prefetch
two results at ¢4 and ¢5, which anticipate the concrete contexts
at time t¢ and t7, respectively. Details follow in Section III-C.
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Fig. 3. Context-Aware Prefetching

The high-level scheduling procedure for context-aware
prefetching (see Algorithm 1) is discussed in the following.

Algorithm 1 Context-Aware Prefetch Scheduling
Require: consumer m, € M, context c.,, € C, timespan t,
1: contexts <= e(my, Ceyr) in range before t(ceyr) + tp
2: while contexts # () do
3: Cpext < contexts|l]
4 requests <= U, g7 (52, Mz, Creat)
5: Qreq <~ ZTZGR qr (rm7 My, Cnewt)
6: if da (cnezt) < Qreq then
7
8
9

wait until current time reaches t(Cpeqt) — tprefetch
requests < sort requests by importance
: add requests to queue (q)

10:  end if

11:  wait until ¢,.,; becomes current context

12: Ceur <= Cpext

13:  contexts <= e(My, Ceyr) in range before t(ceur) + tp

14: end while

Given a service consumer m, and current context C.,,, the
algorithm repeatedly projects the next context ¢, (line 3)
within a given future timespan ¢, (lines 1 and 13), and
generates requests (line 4) to determine the required network
quality (line 5). If we anticipate that the quality under context
Cnext WIll be insufficient (line 6), then we initiate prefetching
by sorting the requests by importance (line 8) and adding the
requests to the queue (line 9). Note that line 8 satisfies the
criterion in Equation 3. Moreover, using an estimate for the
duration to execute the requests (¢ fetcn) the prefetching is
scheduled for the latest possible time (line 7), which is a useful
heuristic to approximate the criterion in Equation 4.

C. Prefetch Request Generation

Based on the scheduling for prefetching (Section III-B), we
now discuss different mechanisms for generating prefetching
requests. In general, to prefetch a service for time to at time
t1 < to requires to anticipate the concrete invocation that will
be requested at t5. We distinguish between constant requests
(Section III-C1), template-based requests (Section III-C2), and
complex request patterns (Section III-C3).

1) Constant Requests (Polling): Constant requests are in-
dependent of (client-side) context information. Figure III-C1
illustrates a periodic request pattern with a constant request to
retrieve new email messages.

Service . ) ]
Requests: getEmaild getEmail() getEmail()
Time: ty t s >

Fig. 4. Polling an Email Service

2) Template-Based Requests: If request messages depend
on the context under which they are issued, we use a template-
based approach. In Figure 5, the template for the getTrafficInfo
request contains a placeholder for the current location (in-
dicated with double curly braces “{{}}”), which is replaced
by the location parameter (/) of the associated context. This
approach allows to prefetch the exact service data which
will be required in the future, provided that context-aware
prefetching (see Section III-B2) is possible.

Request
Template:

Context:  [{I=(47.1,102)}]  [{=(47.210.3))| [{I=(47.3.10.4}]

| getTrafficinfo(loc = {{1}}) |

Service getTrafficinfo( getTrafficinfo( getTrafficInfo(

Requests: | 47.1,10.2) 47.2,10.3) 47.3,10.4)

Time: t1 to t3 o
Fig. 5. Template-Based Requests for a Traffic Info Service

3) Complex Request Patterns: Some service interactions re-
quire more complex patterns, which also need to be considered
for prefetching. For instance, Figure 6 illustrates the generation
of requests for the Media Stream service. The context includes
the progress (progress) of the currently playing song (cur-
Song). Assume that music titles are divided into chunks, and



the chunks of the next song (nextSong) are requested when the
progress of the current song reaches a certain threshold (e.g,
at 1% and 51%). To support such complex request patterns,
a simple template-based or other declarative approach is not
sufficient. Hence, the request generation logic has to be defined
programmatically, e.g., using code statements, a rule engine,
or similar. We are currently working towards a domain-specific
language (DSL) to simplify this task.

Service
pervice [ getChunk(songID, chunkiD) |
{curSong=1, {curSong=1, {curSong=2, {curSong=2,
Context: progress=1%, progress=51%, progress=1%, progress=51%,
nextSong=2} nextSong=2} nextSong=3} nextSong=3}
Service : : : :
Requosts: ’getChunk(Z,l)‘ ’getChunk(Z,Z)‘ ’getChunk(3,1)‘ ’getChunk(3,2)‘
Time: t1 to t3 g o

Fig. 6. Complex Requests for a Media/Music Service

IV. IMPLEMENTATION

We have implemented the presented approach in a Java
prototype, which is available open-source® (including the eval-
uation data, see Section V). The coarse-grained architecture
is depicted in Figure 7. The implementation is embedded in
the OSGi (Open Service Gateway initiative)-based SIMPLI-
CITY runtime environment for mobile Cloud services. The
prefetching manager is currently integrated as a client-side
component; in future, we plan to provide a reliable deployment
mechanism [11] to host it as a migratable Cloud service.
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Fig. 7. Prefetching Client Architecture Overview

Each service consumer is associated with a context, which
holds data such as the current time and location, the future
route of the vehicle, or the configuration of running services
(e.g., a music title currently playing in the media streaming
service). Whenever the context changes, the context listener
informs the prefetching strategy, which makes its decisions
based on the context predictor (predicting the context evolution

3https://github.com/whummer/service-prefetching

function e), the usage predictor (how services will be re-
quested in the future) and the network quality predictor (which
network coverage will be available in the future). The request
generator creates new service invocation requests, which are
executed by the invoker and stored in the result cache. Later,
when a service consumer attempts to invoke a service which is
not reachable, the prefetched result is loaded from this cache.

Network quality prediction works on the basis of cellular
network coverage maps, which are readily available from most
telecommunications providers. Given the predicted future lo-
cation of a device, an estimation of the connection quality can
be determined, depending on the available connection type(s)
(e.g., 2G/3G/4G). In the evaluation (see Section V), we require
information about network quality in Switzerland. We utilize
the mobile network coverage service from telecommunications
provider Swisscom*, which is provided as a graphical overlay
for Google maps. Since there is no computer-readable API for
this service, we automatically fetch and parse the overlay map
images to determine the network quality function ¢ : L — R™T.
In addition, we query the OpenStreetMap API° for nodes
tagged “funnel=yes”, since we can expect that connectivity
is limited or unavailable in some tunnels.

V. EVALUATION

To evaluate our approach, we have set up a comprehensive
experimentation based on a popular data set of vehicular
traces®, introduced in [12]. The trace data set simulates a
multitude of cars driving across Switzerland, based on GPS
locations and routes of real road maps.

A. Evaluation Setup

We have extracted traces of 50 moving cars (i.e., mobile
devices, M = {my,...,ms0}) from the data set, resulting in
13135 data points with different time and location information.
Since the accuracy of the data points does not match our
requirements (average distance of 79.9 seconds between each
two data points), we interpolated the simulation between the
data points and move forward in our simulation in steps of 10
seconds, resulting in a total of 109248 time points. Moreover,
there are some large gaps in the data (1 hour and more between
two points), which we eliminated during preprocessing.

All tests were executed in a private Cloud environment,
running OpenStack on top of machines with two Intel Xeon
quad-core CPUs, 32 GB RAM, Linux kernel 3.0.0-16. Clients
(simulating the moving devices) and services (hosting the
required functionality) are deployed on distributed hosts. The
evaluation occupied our hardware for roughly two hours.

We assume that the clients use the scenario services from
Section II with different access patterns. Table III lists for each
service the importance, time criticality, and required network
quality ¢,, measured using the assumed data transfer rate
(in kbps). These values are rough approximations, and for
simplicity we do not distinguish download and upload speeds.

“http://scmplc.begasoft.ch/plcapp/pages/gis/netzabdeckung.jsf
Shttp://api.openstreetmap.org/
Shttp://www.lst.inf.ethz.ch/research/ad-hoc/car-traces/



TABLE III
ACCESS PATTERNS AND TRANSFER RATES FOR SCENARIO SERVICES

Service (sz) Access Pattern li(sz)|c(sz)| ar |
s1: Traffic Updates fetch every 60 secs 1.0 | 1.0 |50
s2: (Re-)Routing initiate every 300 secs 1.0 | 07 |75

s3: Vicinity Info
s4: Media Stream
s5: Mail and IM
se: Stats & Sync

query when location changes| 0.7 | 0.6 |100
retrieve every 20 secs 0.8 | 03 (150
sync every 180 secs 06 | 09 |50
upload every 600 secs 0.2 | 0.2 (100

Figure 8 compares the projected service data usage against
the available network quality for an exemplary service con-
sumer m; € M. For simplicity, the quality is measured as
data rate (kbps): the required quality is derived from the
combined values of ¢, for all services (see Table III), and the
available quality g, corresponds to the theoretical maximum
speed of different cellular connections based on the Swisscom
coverage map (we assume 2G=150kbps, 3G/UMTS=384kbps,
3G/HSPA=5.76mbps, 4G=50mbps).

Note that our approach does not rely on these values being
entirely accurate; typically it is mainly relevant whether there
is any connectivity (e.g., no connectivity around time point
12000 in the figure) or at least 3G/UMTS, because data rates
on the high end of the spectrum are hardly reached with the
services considered here (note the logarithmic scale on the y-
axis). To get more realistic values, regional data from “speed
test” pages could be integrated.
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Fig. 8. Exemplary Data Usage and Availability for Consumer mj

B. Evaluation Results

During execution of the experiment, we simulated network
downtimes (based on the Swisscom coverage map and Open-
StreetMap data), and the service invoker reported whenever
a service request could not be sent. Figure 9 reports the
aggregated numbers for service invocations which were pos-
sible when requested (¢, >= ¢,-) and service requests which
required prefetching (g, < ¢,). We observe that most requests
can be performed normally, but around 1000 of 40000 requests
required prefetching. Note, however, that this value may be
higher in a real setting if there are intermittent downtimes
caused by fluctuations in the cellular network.

Next, we investigate the freshness of data, i.e., the age of
results caused by service prefetching. Figure 10 depicts a box
plot with the age of prefetched results, aggregated over periods
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Fig. 9. Sufficient Network Quality versus Prefetching Required
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Fig. 10. Age of Results with Context-Based Prefetching

of 500 seconds along the timeline in the graph. Evidently,
the longer a car is offline, the older the results. The longest
streaks of offline activity are due to cars leaving the Swiss
country territory where Swisscom has no network coverage
(result age = 560 seconds), and driving through the 17km long
Gotthard road tunnel (result age = 590 seconds).

Related to the age of results, we evaluate the accuracy of
prefetching in terms of whether results are available or not.
Similar to misses in caching, we speak of a prefetching miss
if a service request r, € R cannot be issued (¢, < @)
and there is no prefetched result available. Prefetch misses
can be either caused by unanticipated events (e.g., temporary
network outage), or if the algorithm does not consider contexts
sufficiently long into the future (timespan ¢, see Algorithm 1).
Figure 11 analyzes the prefetch misses for different times of
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Fig. 11.  Prefetch Misses for Different Prediction Timespans (tp)



t, (30, 180, and 900 seconds). While there is a considerable
amount of misses for ¢, = 30, there are effectively no prefetch
misses for ¢, = 900, because this value is greater than the
longest period that requires prefetching in our scenario (driving
through Gotthard tunnel, 682 seconds).

Finally, we take a closer look at comparing periodic with
context-based prefetching, considering the result age. Figure
12 shows the accumulated sum of all result ages over time, for
different prefetching strategies (each projecting ¢, = 900 sec-
onds into the future). The lowest numbers are achieved when
using context-based prefetching. For periodic prefetching, the
results depend on the update interval (¢;, see Section III-B1).

However, the benefits (result age) of low update intervals
(t;) in periodic prefetching are offset by the disadvantage
of unused results, due to the fact that results are repeatedly
prefetched but only the most recent result is actually used by
the consumer. As illustrated in Figure 13, unused results are
considerably higher (max. 84 versus max. 460) if the update
interval is reduced (450 vs. 90).
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VI. RELATED WORK

Prefetching has been observed in different areas of computer
science for a long time, e.g., file systems or databases [13],
media streaming [14], [15], or WWW latency [16], [17], [18].
However, to the best of our knowledge, research on data
prefetching for mobile applications as discussed in this paper is
still in its infancy and the number of sophisticated approaches
is rather small [6]. Notably, we are not aware of any approach
which addresses data from the Cloud to mobile devices.

In a seminal approach, Cao presents power-aware proactive
caching for mobile devices, which is actually prefetching [19].

However, the author assumes a broadcasting scenario, which
is not in line with the system model applied here. Also, the
location of mobile users does not influence the prefetching.

Schreiber et al. propose a prefetching mechanism for mobile
access to services hosted in Service-oriented Architectures
(SOA) [20]. While in our work prefetching is controlled by the
client, they apply a proxy server-based approach. Interestingly,
prefetching is done using a piggybacking approach. This
minimizes additional connections between proxy and client
and therefore enhanced power efficiency. The actual prefetch-
ing control is based on a sequence prediction algorithm and
therefore best-suited for known workflows. There are further
examples which apply a dual prefetching approach for Web
services, i.e., on the client and server/proxy side, e.g., [21],
[22], [23]. These approaches do not come into question for
the scenario at hand, since we assume that the proxy/server
side is not available at certain points of time and therefore
prefetching has to be done at the client side.

Parate et al. [24] provide a prefetching approach for mobile
apps, based on estimations of the app(s) to be used next. De-
pending on the prediction, data for these apps are prefetched.
Context information like the future location of the user, which
we use to derive the actual need for prefetching, is not explic-
itly taken into account. However, the authors apply coarse-
grained location information, e.g., “at home”, “workplace”.

Higgins et al. [6] present the Informed Mobile Prefetching
(IMP) approach, which is based on the three dimensions
performance, energy usage, and data consumption. In contrast
to our work, their focus is mostly on performance (in terms of
user-perceived latency) optimization for devices with limited
power. Correspondingly, the need for prefetching in the IMP
system model results from a latency gain, while in our work,
we focus on actual data provision as the primary goal of
prefetching. Moreover, IMP assumes that exact predictive
values for network bandwidth, latency etc. are available,
whereas we mainly build on (GPS) location information to
predict contexts with low or zero connectivity (e.g., tunnels).
Nevertheless, IMP comes closest to the work at hand.

In the field of Internet access from cars, the research focus is
primarily on improvement of vehicular WiFi access, e.g., [25],
or between cars in Vehicular Ad Hoc Networks (VANets), e.g.,
[26], [27]. In contrast, data prefetching has only been applied
rarely: Siris and Kalyvas introduce a solution to prefetch data
on roadside WiFi hotspots for later downloads by passing
vehicles [28]. In this work, the authors observe the problem
from a different angle, i.e., the one of an infrastructure provider
who wants to reduce costs by minimizing 3G/4G traffic.
Prefetching is done based on user requests from the mobile
device: After a request has been received, the data is prefetched
on WiFi hotspots that the user will encounter in the near future.
Wau et al. take into account prefetching in a very specific case,
i.e., cooperative media streaming in mobile environments [29].
Similar to [28], prefetching is done at (WiFi-based) streaming
access points the user may likely encounter in the near future.
Both approaches use location information to estimate the need
for prefetching.



While the number of context-aware prefetching approaches
is rather small, it should be noted that context awareness has
been a major topic in Service-oriented Computing in recent
years [30]. In the field of mobile services, context awareness
has been primarily applied to adapt service protocols based
on the context (e.g., [7]) or to personalize the outcome of a
service based on the information needs of the user (e.g., [31]).
Such solutions are orthogonal to the work at hand and could be
combined in the future to further improve the user experience.

VII. CONCLUSION

Whereas prefetching has been elaborated in other areas in
the past, this work is among the first to study prefetching on
the level of Cloud-based mobile services. Our context-based
approach anticipates foreseeable service delivery problems and
prefetches results in a timely manner, in order to deliver con-
sistent Quality of Experience (QoE). The paper discusses and
thoroughly evaluates periodic prefetching (useful if context
predictions are limited) and context-based prefetching (ideal
to optimize data freshness and network usage). Based on an
illustrative scenario, we demonstrate how concrete prefetching
requests are generated, from simple polling, to template-
based requests and complex request patterns. Our evaluation,
which combines realistic GPS car traces with cellular network
coverage maps and OpenStreetMap data, provides an in-depth
analysis of the experimentation data and reveals the strengths
and weaknesses of different prefetching variants.

Some limitations remain, which we tackle as part of our
future work. In our extended evaluations, we strive to obtain
more detailed insights concerning prefetching under faults [32]
(e.g., intermittent network outages) or other irregularities (e.g.,
deviation from the projected contexts). In addition, the current
approach does not distinguish in detail between different data
types (e.g., volatile or stable) and does not take into account
that users may share data among different application contexts,
which may open opportunities for further optimization. More-
over, we aim to apply data prefetching for event-based appli-
cations within the Internet of Things (IoT). One of the core
challenges in this field is related to optimal positioning [33]
of prefetching services among multiple interacting devices.
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