
Best Practices for Testing and Debugging
of Cloud Applications

Dr. Waldemar Hummer
LocalStack GmbH

waldemar@localstack.cloud

Outline
● Introduction
● Background: Cloud vs Traditional Software Development
● Challenges in Today’s Cloud Development
● Repeatability, IaC, Ephemeral Environments
● Cloud Testing Approaches

○ Mocking, Emulation, Remote, Hybrid Execution

● Advanced Use Cases for Cloud Emulation
● Conclusion

Cloud vs Traditional Software Development

Cloud App Development
● Cloud environments provide a number of managed services

○ Well-defined interfaces (input/output messages) and semantics
○ Using APIs with some well-defined protocol (e.g., JSON/REST over HTTP)

● Services for different purposes / concerns
○ Compute, e.g.:

■ Function-as-a-Service (e.g., AWS Lambda)
■ Containerized Applications (e.g., Docker containers, Kubernetes pods)
■ Virtual Machines (e.g., AWS Elastic Compute Cloud (EC2))

○ Databases, e.g.:
■ Relational DBs, Graph DBs, Key-Value stores, etc.

○ Messaging, e.g.:
■ Queueing services, Pub/Sub systems, Streaming systems (e.g., Kafka)

○ Ingest, e.g.:
■ API Gateways, GraphQL APIs, Content Distribution Networks (CDNs), etc

○ …

Raising the Abstraction Level
● Simplification - users can focus on developing application logic

○ “Serverless” computing - removing the necessity to manage/install servers

● Example: Lambda functions on AWS
○ Simple Lambda handler that prints the invocation event and returns it to the client

● Deployment:

Cloud Operating System

https://www.openstack.org/software

● Internally, the Cloud is a
higher-level OS

Traditional OS Cloud OS

Processes FaaS, Containers, VMs

Disk controllers Storage services

Network I/O VPCs, API/NAT Gateways

Scheduler Event Bus

Access Control IAM users, roles, policies

IPC / signals API calls / notifications

Example: OpenStack

https://www.openstack.org/software

Cloud Native
Computing
Foundation
(CNCF)

https://landscape.cncf.io

→ Large landscape of
services

→ Split up into main areas
(App dev., orchestration,
runtime, provisioning, …)

→ strong focus on
Kubernetes-based and
cloud agnostic cooling

https://landscape.cncf.io

Sample Cloud Application

https://aws.amazon.com/architecture/reference-architecture-diagrams

● Reference Architecture: Backend for frontend (BFF) using API Gateway

https://aws.amazon.com/architecture/reference-architecture-diagrams

Cloud Application Layers (simplified)

Infrastructure
Layer / Control
Plane

Network
Configuration

Application
Logic Layer

Data Layer

FaaS
Functions

Databases

Clusters (e.g.,
Kubernetes)

VMs /
containers

Buckets Storage
Volumes

Autoscaling
policies

Testing Focus

→ Correct provisioning logic
→ Handle out-of-band changes
→ Resource Teardown/cleanup

Access Control
Layer

Service-to-
service auth

Users, roles,
RBAC policies

API keys,
entitlements

→ Assert access policies
→ Positive and negative tests
→ (Note: can become a
hindrance to test other layers)

Messaging
Layer

Message
Queues

Publish/
Subscribe

→ Basic CRUD operations
→ Data integrity
→ Data streams updates

→ Different delivery semantics
→ Termination conditions (e.g.,
avoiding infinite update loops)

High-throughp
ut buffers

APIs / Ingest /
Transformations

→ End-to-end app logic
→ Main user flows / interactions
→ Unit + integration tests

Approaches for Testing & Debugging

Traditional App. Development Cloud Computing

Dev. feedback cycles Local code compilation Uploading code to the cloud

Debugging Setting local breakpoints Based on log outputs, tracing information

Local Testing Mocking of dependencies Often testing in the real environment

Distributed Execution Monolithic / larger components Inherently distributed / event-based logic

State Inspection Memory dumps, profiling, … Logs, tracing, monitoring metrics

Reproducibility Restart app & restore/inject state Logs & API calls (harder to restore state)

Security & Auth. Often tackled by a middleware Inherent part of service-to-service comm.

Challenges in Today’s Cloud Development

Context: One day in the life of a Cloud developer

12

Alice is tasked with creating a new
serverless Web application on
AWS Cloud.

Developing on her local machine, she
realizes that there are lots of
dependencies with resources in the
cloud (DBs, VMs, MQs, S3, …)

Alice realizes that the dev&test loop is
extremely slow and tedious. Every
local change needs to be packaged
and uploaded to the cloud for testing.

Alice and her team are using Git flow
for development - one CI build per
feature branch. There is an explosion
of different environments required
for testing (branches * developers).

The dev manager approaches the
team and complains that AWS test
resources are not being cleaned up
properly (causing a substantial cost
spike in the last months).

#!*$

?
?

?

Dev Env. 1
$$

Dev Env. 2
$$$$

Dev Env. 3
$$$

Dev Env. 4
$$

①

Alice has a red build on her feature
branch, but has troubles efficiently
testing and debugging her code in
the CI/CD pipeline.

?
Branch 1

Branch 2
Branch 3
Branch 4

② ③

④ ⑤ ⑥

[1] https://www.flexera.com/blog/application-readiness/cloud-computing-trends-2021-state-of-the-cloud-report/

$17.6B /
35% Cloud
Waste [1] in

2020

https://www.flexera.com/blog/application-readiness/cloud-computing-trends-2021-state-of-the-cloud-report/

Digression (a bit controversial*):
Cloud being compared to the mainframe era

Hackernews user “jiggawatts”

“The cloud is the new time-share mainframe. Programming in the 1960s to 80s was like this too. You'd
develop some program in isolation, unable to properly run it. You "submit" it to the system, and it would be
scheduled to run along with other workloads. You'd get a printout of the results back hours later, or even
tomorrow. Rinse and repeat.

This work loop is incredibly inefficient, and was replaced by development that happened entirely locally on
a workstation. This dramatically tightened the edit-compile-debug loop, down to seconds or at most
minutes. Productivity skyrocketed, and most enterprises shifted the majority of their workload away from
mainframes.

Now, in the 2020s, mainframes are back! They're just called "the cloud" now, but not much of their
essential nature has changed other than the vendor name.”

https://hacker-news.news/post/26855037* This discussion is a bit controversial - please take it with a grain of salt :)

https://hacker-news.news/profile/jiggawatts
https://hacker-news.news/post/26855037

Digression (a bit controversial):
Cloud being compared to the mainframe era

Hackernews user “jiggawatts”*

“The cloud, just like mainframes:
● Does not provide all-local workstations. The only full-fidelity platform is the shared server.
● Is closed source. Only Amazon provides AWS. Only Microsoft provides Azure. Only Google

provides GCP. You can't peer into their source code, it is all proprietary and even secret.
● Has a poor debugging experience. Shared platforms can't generally allow "invasive" debugging

for security reasons. Their sheer size and complexity will mean that your visibility will always be
limited. You'll never been able to get a stack trace that crosses into the internal calls of the
platform services like S3 or Lambda. Contrast this with typical debugging where you can even
trace into the OS kernel if you so choose.

● Are generally based on the "print the logs out" feedback mechanism, with all the usual issues of
mainframes such as hours-long delays.”

https://hacker-news.news/post/26855037

https://hacker-news.news/profile/jiggawatts
https://hacker-news.news/post/26855037

Inner vs Outer Dev Loop
● Inner Dev Loop

○ Quick iterations, frequent changes, mostly on the local machine
○ Tools: IDE, debugger, break points, memory dumps, execution traces

● Outer Dev Loop
○ Infrequent changes, testing the integration, long-running tests
○ Often executed via automated builds in a CI/CD system

● Achieving an efficient inner dev loop is the
“holy grail” for efficient SWE, but can be
challenging, e.g.:
○ instant feedback for application changes
○ managing dependencies (e.g. utility microservices)
○ In practice, larger organizations often employ

dedicated DevX teams to optimize dev efficiency

Repeatability, IaC, Ephemeral Environments

Infrastructure-as-Code
● IaC has become popular with the DevOps movement

○ Applying software engineering best practices to infrastructure management
○ Shielding off production systems from any manual changes

● Resources are defined in a declarative way
○ E.g., Terraform: creates a plan, which is then applied to create the resources

IaC - Terraform
● Ability to define resources

declaratively
○ E.g., SQS queues, Lambda

functions, etc.
● Existing resources are

automatically determined by TF
● Note: Also IaC scripts need

thorough testing!
○ Often the application logic

(e.g., Lambda function) is
actually not that relevant →
even more important to
have quick feedback cycles

References to resource IDs/ARNs - used
internally by TF to build the dependency graph

Cloud SDKs
● Software Development Kits (SDKs) used to interact with the Cloud
● Available for different programming languages
● Example: creating an S3 bucket in AWS

○ Python:

○ Java:

○ Golang:

Ephemeral Environments
● Short-lived environments that are created for a certain purpose

○ User acceptance testing, UI layout review, quick experimentation, …

● Critical in a testing context
○ Running Continuous Integration (CI) builds on every code change
○ Infrastructure needs to be frequently created and teared down
○ Providing app previews - e.g., show an updated version of a Web UI to

review changes

● Can be achieved with Infrastructure-as-Code scripts
○ Simplest case: applying infrastructure changes against a clean/fresh

environment
○ Requires some logic/parametrization when applied against an existing

environment that contains resources (e.g., to avoid naming conflicts)

● Becoming quite popular in the container/Kubernetes space
BUT: still rarely available for managed cloud services!

https://ephemeralenvironments.io

https://ephemeralenvironments.io/

Cloud Testing Approaches

The Testing Pyramid
https://blog.ncrunch.net/post/testing-pyramid-automated-testing.aspx
https://martinfowler.com/articles/practical-test-pyramid.html

Classical Pyramid

More
Integration

More
Isolation

Slower

Faster

“Ice Cream Cone” “Hourglass” “Cupcake”

https://blog.ncrunch.net/post/testing-pyramid-automated-testing.aspx
https://martinfowler.com/articles/practical-test-pyramid.html#TheTestPyramid

Remote Testing
Local Testing

Cloud Testing Approaches

Mocking

→ Create mocks, fixtures
that provide test data

Pros:
→ quick dev loops
→ fast test execution

Cons:
→ high effort
→ not reusable

Emulation

→ Emulate the behavior of
cloud APIs locally

Pros:
→ quick dev loops
→ little adjustments in code

Cons:
→ hard to achieve full parity
→ resource constraints

Remote Cloud APIs

→ Run all tests against the
real cloud environment

Pros:
→ full power of real cloud
→ include IAM/security early on

Cons:
→ slow dev loops
→ collaboration barriers
→ reduced debuggability

● Different strategies for developing application logic and executing tests

Hybrid Setups

Mocking
● Frequently used method in software engineering and testing

○ Change the behavior of a certain piece of logic for the duration of a test
○ Lots of different frameworks for different programming languages

■ Python: pytest, Java: mockito,

● Cloud mocking: usually tackled on the SDK level

Mocking (2)
● Some Cloud SDKs

even provide built-in
mocking support

● e.g., botocore Stubber
in the AWS Python
SDK

Based on: https://stackoverflow.com/questions/37143597/mocking-boto3-s3-client-method-python

https://stackoverflow.com/questions/37143597/mocking-boto3-s3-client-method-python

Emulation
● Provide a representative version of the real system

○ Lower the barrier for development
○ Allows developing apps without actually owning the device

● Emulation has been popular in certain areas:
○ Mobile phone emulation (e.g., Android Studio)
○ Browser emulation (e.g., test Web apps for different browsers)
○ Embedded systems - abstractions for hardware components
○ Simulation - allows for creating different test scenarios

■ e.g., changing the system time, simulating faults, …

● Increasingly also popular for cloud / managed services
○ Enables experimentation, easier integration with tests in CI pipelines
○ Can dramatically simplify and speed up testing (at least for certain scenarios)

https://developer.android.com/studio/run/emulator

Cloud Mocking and Emulation Libraries
● moto

○ Community project on Github that focuses on mocking the AWS SDK in Python
● LocalStack

○ Arguably the most advanced emulation platform currently out there (current focus on AWS)
○ Provides a platform (mini Cloud OS) to run users’ cloud workloads on the local machine
○ Plugin system allows to easily plug in new service providers

● Tools by Cloud Providers
○ Cloud providers have published a few individual tools, but relatively fragmented:
○ AWS: StepFunctions Local, DynamoDB Local
○ GCP: emulators for bigtable, datastore, firestore, pubsub, spanner (mostly focused on DBs)
○ Azure: Storage Emulator (Blob, Queue, and Table services)

● Various smaller projects on Github that focus on individual cloud services,
or generic mocking libraries

https://github.com/spulec/moto
https://github.com/localstack/localstack

Simulation
● Cloud environments are large, dynamic, distributed systems

○ Lots of complex interactions constantly happening in parallel
○ Exposed to external user requests which can spike and fall (resulting in auto-scaling)
○ Subject to resource quotas, and other pricing optimizations (FinOps)

● Various faults can (and do!) happen at runtime
○ E.g., ProvisionedThroughputExceeded for throughput-constrained databases on AWS
○ Network partitions, IAM security policy enforcement issues, etc
○ Duplicate messages generated by services using at-least-once messaging semantics

● Chaos Engineering
○ Deliberately inject faults, to make the application logic more resilient
○ E.g. Chaos Mesh - a chaos engineering platform for Kubernetes (https://chaos-mesh.org)

■ fault injection for network, disk, file system, operating system, etc

https://chaos-mesh.org

Advanced Use Cases for Cloud Emulation

● Platform to emulate cloud environments on the local machine
○ Current focus on AWS, but gradually developing into a multi-cloud platform

● Very strong community traction (40k+ stars on Github)

● Shipped as a Docker image
○ Light-weight, easy to install

● Exposes APIs on a central port
○ AWS SDK clients can be configured to

connect to http://localhost:4566

● State is kept in memory by default
○ Can also be persisted to disk

LocalStack Docker Container

Main process (Python)

LocalStack

Edge proxy
(port 4566)

SDK Client

Lambda

DynamoDB

S3

ECS

Java
process

Lambda
containers
Lambda
containers
Lambda
containers

…

Lambda
containers
ECS
containers

Persistent volume (mounted from the host)

http://localhost:4566

LocalStack Startup

Lambda Hot Reloading
● Default mode for AWS Lambda is to re-deploy the function code

○ Create zip file, upload to cloud, re-create function, …

● In local dev mode, we can leverage hot reloading
○ User code gets mounted into the Docker container
○ Any changes in the file are immediately reflected

in the container

● Enables quick feedback cycles
○ Allows to re-run the Lambda without re-deployment
○ Dumping log/dump files directly to disk for easy debugging

Lambda Code Mounting

Local Machine

Lambda Docker Container

Interpreter/Executor
Process (Java/Python/...)

Lambda Handler
(User’s Code)

Emulator
(LocalStack)

Local
Cloud
APIs

D
eb

ug
Po

rt

...

mount

Lambda Debugging

Docker Container

Interpreter/Executor
Process (Python)

Emulator
(LocalStack)

D
eb

ug
Po

rt

...

User’s IDE
(e.g., Visual

Studio Code)

Connect to
debug port,

set
breakpoints,

…

Lambda
API

Create
Lambda

Hybrid Approaches
● Combine real cloud resources with

local execution

● Examples:
1. Local Lambda, remote DB

2. Outbound / Proxying

3. Inbound / Replication

Local Environment Remote Cloud
Environment

DynamoDB
Table

Lambda
function

execution

Local Environment Remote Cloud
Environment

DynamoDB
Table

Lambda
execution

Local
Proxy

Local Environment Remote Cloud
Environment

DynamoDB
Table

Lambda
execution

Local
State

Replica-
tion script

S3 Bucket Mounting

● Ability to run mount local directories
as S3 buckets

● Bi-directional mapping
○ parent folders ⟷ S3 buckets
○ files ⟷ S3 objects

● Useful to s
○ Quickly inspect files locally
○ Observe changes in the FS

/
 - b1
 - dir1
 - myfile.txt
 - dir2
 - file2.jpg
 - b2
 - dir2
 - file3.zip

Local File System Emulated S3

Bucket b1

s3://b1/dir1/myfile.txt

s3://b1/dir1/file2.jpg

Bucket b2

s3://b2/dir2/file3.zip

CI System

LocalStack
User 1

Build Jobs

..

.

Local Cloud Pods
Storage Backend

Local
Cloud Pod
pod1

Local
Cloud Pod
pod2

LocalStack
container

Application
Code

Test Code

LocalStack
CI Plugins

pull latest
state to

bootstrap
test env.

push/pull
app. state

LocalStack
User 3

LocalStack
User 2

easily
collaborate
via shared
app. state

Production
(or Dev/Shared)

Cloud
Environment

sync state and
test data from

prod into dev/CI
environment

Local Cloud Pods - Integration with CI/CD Systems

Conclusion

To conclude …
● The Cloud provides economies of scale and unbeatable stability/efficiency

for production workloads - however, dev loops sometimes still suboptimal
○ Deploy-test-redeploy loops, local reproducibility, resource conflicts in shared envs, …

● Different testing methods can be applied (mocking, emulation, hybrid, …)
○ Also more advanced testing methods like chaos engineering

● Spend some time on researching your ideal cloud testing setup/strategy!
○ Can be an upfront investment, but will pay off over time …

● Future directions
○ The space of cloud testing/emulation is exciting and evolving fast - give it a try and get involved!

Today

A Vision for the Future …
● Let’s envision a world where:

○ There’s an emulator for every managed service
○ Emulators becoming table stakes - you “don’t exist” if you don’t provide

one
○ Local dev environments become easily configurable and composable

● Similar to impact of OpenAPI specs on APIs and microservices
○ API specs → huge boost for interoperability
○ Emulators → huge boost for dev velocity

■ providing a high-fidelity representation of the semantics and
inner workings of an API

● It has been demonstrated that it is feasible (e.g., LocalStack)
○ Hard to imagine a system that is more complex than a cloud platform
○ Yet, emulators can raise the abstraction to a level suitable for local dev

API
specs

API
specs

Client
SDKs
Client
SDKs

Client
SDKs

Tomorrow

API
specs

API
specs

Client
SDKs
Client
SDKs

Client
SDKs

Emulators 🚀

Get started: https://docs.localstack.cloud/get-started/

● Trial of LocalStack Pro: https://app.localstack.cloud/
● Free educational licenses: https://localstack.cloud/educational-license/

Scan to join our Slack channel!

Engage with the community:

● Engage with our community and spread the word!
Reach out to us with any feedback or to setup
joint community events (info@localstack.cloud)

Try it out - engage with our community

https://docs.localstack.cloud/get-started/
https://app.localstack.cloud/
https://localstack.cloud/educational-license/

Thank You!

info@localstack.cloud

https://localstack.cloud

@_localstack

https://linkedin.com/company/localstack-cloud

localstack-community

